A Discrete Mechanics Approach to Gait Generation on Periodically Unlevel Grounds for the Compass-type Biped Robot
نویسندگان
چکیده
This paper addresses a gait generation problem for the compass-type biped robot on periodically unlevel grounds. We first derive the continuous/discrete compass-type biped robots (CCBR/DCBR) via continuous/discrete mechanics, respectively. Next, we formulate a optimal gait generation problem on periodically unlevel grounds for the DCBR as a finite dimensional nonlinear optimization problem, and show that a discrete control input can be obtained by solving the optimization problem with the sequential quadratic programming. Then, we develop a transformation method from a discrete control input into a continuous zero-order hold input based on the discrete Lagranged’Alembert principle. Finally, we show numerical simulations, and it turns out that our new method can generate a stable gaits on a periodically unlevel ground for the CCBR.
منابع مشابه
Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملFrom Passive Dynamic Walking to Passive Turning of Biped walker
Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...
متن کاملA Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملStable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملOptimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk
Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...
متن کامل